初中数学中蕴含的数学思想方法很多,最基本最主要的有:转化的思想方法,数形结合的思想方法,分类讨论的思想方法,函数与方程的思想方法等。
1. 对应的思想和方法:
在初一代数入门教学中,有代数式求值的计算值,通过计算发现:代数式的值是由代数式里字母的取值所决定的,字母的不同取值可得不同的计算结果。这里字母的取值与代数式的值之间就建立了一种对应关系,再如实数与数轴上的点,有序实数对与坐标平面内的点都存在对应关系……在进行此类教学设计时,应注意渗透对应的思想,这样既有助于培养学生用变化的观点看问题,有助于培养学生的函数观念。
2. 数形结合的思想和方法
数形结合思想是指将数(量)与(图)形结合起来进行分析、研究、解决问题的一种思维策略。著名数学家华罗庚先生说:“数与形本是相倚依,怎能分作两边飞,数缺形时少直觉,形少数时难入微,数形结合百般好,隔离分家万事休。”这充分说明了数形结合思想在数学研究和数学应用中的重要性。
①由数思形,数形结合,用形解决数的问题。
例如在《有理数及其运算》这一章教学中利用“数轴”这一图形,巩固“具有相反意义的量”的概念,了解相反数,绝对值的概念,掌握有理数大小的道理,理解有理数加法、乘法的意义,掌握运算法则等。实际上,对学生来说,也只有通过数形结合,才能较好地完成本章的学习任务。另外,《一元一次方程》中列方程解应用题中画示意图,常常会给解决问题带来思路。第九章《生活中的数据》“统计图的选择”及“复习形统计图”,利用图形来展示数据,很直观明了。
②由形思数,数形结合,用形解决数的问题。例如第四章的《平面图形及其位置关系》中,用数量表示线段的长度,用数量表示角的度数,利用数量的比较来进行线段的比较、角的比较等。
3. 整体的思想和方法
整体思想就是考虑数学问题时,不是着眼于它的局部特征,而是把注意和和着眼点放在问题的整体结构上,通过对其全面深刻的观察,从宏观整体上认识问题的实质,把一些彼此独立但实质上又相互紧密联系着的量作为整体来处理的思想方法。整体思想在处理数学问题时,有广泛的应用。
4. 分类的思想和方法
教材中进行分类的实例比较多,如有理数、实数、三角形、四边形等分类的教学不仅可以使学生明确分类的重要性:一是使有关的概念系统化、完整化;二是使被分概念的外延更清楚、更深刻、更具体,并且还能使学生掌握分数的要点方法:(1)分类是按一定的标准进行的,分类的标准不同,分类的结果也不相同;(2)要注意分类的结果既无遗漏,也不能交叉重复;(3)分类要逐级逐次地进行,不能越级化分,如不能把实数分为整数、分数和无理数。
5. 类比联想的思想和方法
数学教学设计在考虑某些问题时常根据事物间的相似点提出假设和猜想,从而把已知事物的属性类比推广到类似的新事物中去,促进发现新结论。如分式的各种运算法则就是与小学学过的分数的运算法则类比联想到的;再如由天平的平衡条件比得出等式的基本性质,这种方法体现了“法故而知新”和“以旧引新”的教学设计原则,这样的设计起点低,学生学起来更容易接受。教学中由于提供了思维发生的背景材料,既活跃了课堂气氛,又有利于在和谐、轻松的氛围中完成新知识的学习。
6. 逆向思维的方法
所谓逆向思维就是把问题倒过来或从问题的反面思考或逆用某些数学公式、法则解决问题。加强逆向思维的训练,可以培养学生思维的灵活性和发散性,使学生掌握的数学知识得到有效的迁移,如绝对值等于 2 的数有几个,平方得 4 的数是什么,立方得 6 的数是什么,是学习绝对值、有理数的乘方后的逆去用,还有分配律的逆用等。
7. 化归与转化的思想和方法
化归意识是指在解决问题的过程中,对问题进行转化,使之成为简单、熟知问题的基本解题模式,它是使一种数学对象在一定条件下转化为另一种数学对象的思想和方法。如有理数的减法运算是利用了相反数的概念转化为加法;学习方程和方程组时,通过逐步“消元”或“降次”的方法使“多元”转化为“一元”“、高次”转化为“低次”方程进行求解;将多边形的内角和转化为三角形的内角和进行研究等问题都是化归思想的运用,它们均采用将“未知”转化为“已知”、将“陌生”转化“熟知”、将“复杂”转化为“简单”的解题方法,其核心就是将有等解决的问题转化为已有明确解决程序的问题,以便利用已有的理论、技术来加以处理,从而培养学生用联系的、发展的、运动变化的观点观察事物、认识问题。
初中数学思想方法有哪些
数学的思想和方法是初中数学的基础知识。数学学习中要提高我们分析问题的能力,形成用数学的意识决问题,这些都离不开数学思想和数学方法。我们在初中的数学学习中,学到了很多处理数学问题的思想和方法,下面,本人就教学过程中常用的数学思想方法介绍如下:
一、数形结合思想
根据数学问题的条件和结论之间内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和图形巧妙和谐地结合起一,并充分得用这种结合,寻求解题思路,使问题得到解决。
二、联系与转化的思想
事物之间是相互联系,相互制约的。是可以相互转化的。数学学科的各部分之间也是相互联系,可以相互转化的。在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。如:代换转化、已知与未知的转化特殊与一般的转化、具体抽象的转化、部分与整体的转化、动与静的转化等等。
三、分类讨论的思想
在数学中,我们常常需要根据研究对象性质的差异,分各种不同的情况予以考查,这种分类思考的方法是一一种重要的数学思想方法。同时也是一种重要的解题策略。
四、待定系数法
当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母的值就可以,为此,把已知道条件代入特定形式的式子中,往往会得到含待定字母的方和或方程组就使问题得到解决。待定系数法是一种重要的数学解题方法,在代数式恒等变形及研究函数中有着广泛的应用。
五、配方法
把一个代数式设法构造成平方式,然后再进行所需要的变形,配方法是初中代数中重要的变形技巧,配方法在分解因式、解方程、讨论二次函数等问题,都有重要的作用。
六、换元法
在解题过程中,把某个(或某些)字母的式子作为一个整体,用一个新的字母表示,以便进一步解决问题的一种方法。换元法可以把一个较为复杂的式子化简,把问题归结为比原来更为基本的问题从而过到化繁为简、化难为易的'目的。
七、分析法
在研究或证明一个命题时,由结论向己知条件追溯,即从结论升始,推求它成立的充分条件,这个条件的成立如果还不显然,则再把它当作结论,进一步研究它成立的充分条件,直至达到已知条件(或己知的事实)为止,从而使命题得到证明,这种方法叫佬分析法。这种思维过程通常称为“执果寻因”。初中阶段只用分析法求解题,证题的思路,一般不要求用分析法解答或证明命题。
八、综合法
在研究或证明命题时,如果推理的方向是从已知条件中(或已知事实)开始,逐步推导得到结论,这种方法叫综合法。这种思维方块字程通常简称为“自由导果”。我们通常解题或证题所用的方法就是综合法。
九、演绎法
演绎法是由一般事物具有某种性质推出特殊事物也具有某种性质的推理方法,简而言之,由一般到特殊的推理方法叫做演绎推陈出新理。演绎推陈出新理的主要形式是“三段论”式,即由一个大前提和一个结论组成,三段论的理论依据是逻辑公理。初中阶段彩的是演绎推理解答或证明数不命题。
十、归纳法
归纳法是由特殊事物具有某种性质推出一般事物也是具有某种性质的推理方法,简言之,由特殊到一般的推理方法叫做归纳法,也叫归纳推理。又分为:完全归纳法和不完全归纳法。
十一、类比法
在众多的客观事物中,存在着一些相互之间有相似属性的事物,在两面三刀个(或两类)事物之间,根据它们的某些属性相同或相似,推出它们在其他属性方面也可能相同或相似的推理方法叫做类比法,也叫做类比推理。类比法既可能是特殊到特殊,也可能是一般到一般的推理。
中学数学中的数学思想方法
数学思想方法,从接受的难易程度可分为三个层次:
一是基本具体的数学
方法,如配方法、换元法、待定系数法、归纳法与演绎法等;二是科学的逻辑方
法,如观察、归纳、类比、抽象概括等方法,以及分析法、综合法与反证法等逻
辑方法;三是数学思想,如数形结合的思想、函数与方程的思想、分类讨论的思
想及化归与转化的思想.
数学思想方法还可以按其他方式进行分类.
例如,
胡炯
涛认为:
最高层次的基本数学思想是数学教材的基础与起点,整个中学教学的
内容均遵循着基本数学思想的轨迹而展开.
“符号化与变换思想”
、
“集合与对应
思想”以及“公理化与结构思想”构成了最高层次的基本数学思想.他认为中学
数学基本思想是指:
渗透在中学数学知识与方法中具有普遍而强有力适应性的
本质思想.归纳为十个方面内容:
符号思想、映射思想、化归思想、分解思想、
转换思想、参数思想、归纳思想、类比思想、演绎思想、模型思想.
逻辑学中的方法:
分析法、综合法、反正法、归纳法;具体数
学方法:
配方法、换元法、待定系数法、同一法等
本文来自作者[山莲]投稿,不代表臻昂号立场,如若转载,请注明出处:https://anzhentang.com/angzhen/5498.html
 
 
 
 
评论列表(4条)
我是臻昂号的签约作者“山莲”!
希望本篇文章《初中数学有哪些解题思想?_1》能对你有所帮助!
本站[臻昂号]内容主要涵盖:生活百科,小常识,生活小窍门,知识分享
本文概览:初中数学中蕴含的数学思想方法很多,最基本最主要的有:转化的思想方法,数形结合的思想方法,分类讨论的思想方法,函数与方程的思想方法等。1. 对应的思想和方法:在初一代数入门教学中...